Chapter 3

An Introduction to

Finite Difference Calculus

Third Session Contents:

1) Difference operators theory

2) Difference approximation

3) Implicit finite difference equations

4) Fourier analysis error and numerical accuracy
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Difference Operators Theory
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Difference Operators Theory
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Difference Approximation Difference Approximation
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Difference Approximation Difference Approximation
Considering the first term of the right-hand side New central difference operator:  §=u5
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Considering the first term of right-hand side and neglecting the higher order term:
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Compact Implicit Finite Difference

v \ \TeT From the previous section:
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Considering the first term of right-hand side Considering the first and second terms of the above equation:
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‘Which is the standard form we have obtained before.
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Compact Implicit Finite Difference

Using § = é and. §°

Joseph Fourier

Born: March 21, 1768,
Auxerre, France
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Died: May 16, 1830,
Utilizing transform operator Paris, France
f_: [Dfiss +¥Df + DSy = @ +0(h°) Education: Ecole Normale Supérieure
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, , . ¥ . Hermitian Scheme or Jean-Baptiste Joseph Fourier was a French mathematician and

o ¥ YL+ fn = E(ﬁw —fHonn = Compact implicit method physicist born in Auxerre and best known for initiating the
investigation of Fourier series and their applications to problems
of heat transfer and vibrations.
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Fourier Analysis Error and Numerical Accuracy Fourier analysis Error and Numerical Accuracy

Fourier series:
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K, is wave number
" Typical function f(x) L is wave length
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Schematic diagram of a typical function variation versus x
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Fourier Analysis Error and Numerical Accuracy

- L >
i=z
e o aem
« 1=L >
P ("']x v x=-L x=0 x=L
I ey
Y M is the number of waves in
m = (E)m m=e ¥ M, Amax =YL > the specific domain like 2L

15 16



Computational Fluid Dynamics - Prof. V. Esfahanian

&

Fourier Analysis Error and Numerical Accuracy Fourier Analysis Error and Numerical Accuracy
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For a domain with N+1 grid points:
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The smallest and the largest waves for the typical function ‘Which could be defined as an exponential as following:
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Fourier Analysis of the First Derivative

Fourier Analysis of the First Derivative
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Fourier Analysis of the First Derivative Fourier Analysis of the Second Derivative
' Results: Diffusion terms in
s % Higher order methods are more .
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Comparing the analytical and numerical wave number
for N=64 and Apqy = 20 (first derivative)
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Fourier Analysis of the Second Derivative

Results:

Higher order methods are more
accurate

» Different methods with the same
order of T.E. have different errors

< By increasing the wave number, the
error related to finite difference
method will increase too.

< Higher order methods needs less
points for achieving the same errors

. - - < For the small wave numbers, the
WAVE POINT. m1 error approaches zero with different
rates depending on order of T.E.

Comparing the analytical and numerical wave number
for N=64 and Apgy = 20T (second derivative)
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