

Compact Implici	t Finite Difference	
From the previous section:		
$hD = \bar{\delta} \left\{ 1 - \frac{\delta^{T}}{T!} + \frac{T^{T}}{\Delta !} \delta^{T} - \frac{T^{T}}{T!} \right\}$	$\frac{\cdot r^{\tau}}{r!} \delta^{\varphi} + \ldots \bigg\}$	
Considering the first and see	cond terms of the above equation:	
$hD = \mu\delta\left(1 - \frac{\delta^{\intercal}}{\varsigma}\right) + O(h^{\diamond})$	(I)	
Using Newton's expansion	$\longrightarrow hD = \frac{\mu\delta}{\gamma + \frac{\delta^{\gamma}}{\gamma}} + O(h^{\delta}) \text{ (II)}$	Rational fraction or Pade difference scheme
Using (I) equation for f_n	$(Df_n)_i = \frac{-f_{n+1} + \lambda f_{n+1} - \lambda f_{n-1} + \lambda f_{n-1}}{\gamma \tau h}$	$\frac{f_{n-r}}{r} + \frac{h^r}{r} \frac{\partial^{\circ} f_n}{\partial x^{\circ}}$
Using (II) equation for f_n	$h\left(1 + \frac{\delta^{\dagger}}{\varsigma}\right) Df_n = (\mu\delta) f_n + O(h^{\circ})$	
		10

Fourier series					
$f(x) = \sum A_m e^{ik_m x}$					
k_m is wave number		Typical fu	nction $f(x)$		
$ \land$	$ \land \land \land$		$ \land \land$	\frown .	
-L		$, \land$	\mathbb{N}	L	
0	v	\lor	V		

NEER card a fair and a start and a start a sta	
Fourier Analysis of the Second Derivative	
Diffusion terms in momentum equations:	
$\mu_{ ext{eff}} \Big(rac{\partial^r f}{\partial \lambda^r} \Big)$ which $\mu_{ ext{eff}}$ Effective viscosity coefficient	
Second order, central finite difference	
$\mathcal{D}^{r} f = \frac{f_{j+1} - r f_j + f_{j-1}}{\Delta x^{r}} \qquad k_{rm}'' = -\frac{r(\cos \theta_m - 1)}{\Delta x^{r}} \qquad \text{the derivative or}$) show der
Pade method	
$\mathcal{D}^{r} f = \frac{-f_{j-\tau} + \lambda \mathcal{P} f_{j-1} - \nabla \circ f_j + \lambda \mathcal{P} f_{j+1} - f_{j+\tau}}{\lambda \tau \Delta x^{r}} \qquad \left\{ \begin{array}{c} \lambda + \frac{\delta^{r}}{\lambda \tau} \mathcal{D} \\ \kappa_{jm}' = \frac{\lambda \Delta - \lambda \mathcal{P} \cos \theta_m + \cos \tau \theta_m}{\lambda \tau} \end{array} \right\}$	$f = \frac{\delta^{\mathrm{v}} f}{\Delta x^{\mathrm{v}}}$
$\varphi \Delta x^{r}$ (0+	$\cos \theta_m \Delta x$
	22

